Test Person

11	າາ	-
11	သ	IJ

1	

Un lungo filo rettilineo è percorso da una corrente di 2mA. Qual è il valore del campo magnetico B generato dal filo a una distanza di 2 mm?

- 4·10⁻⁷ T
- $2\pi \cdot 10^{-7} \text{ T}$
- 1 · 10 ⁻⁷ T
- $2\pi \cdot 10^{-7} \text{ T}$
- $\checkmark 2 \cdot 10^{-7} \text{ T}$

Risposta corretta. 1/1p
Total points: 1/1p

2.

Una particella con carica elettrica q e velocità \overline{v} entra in una zona di spazio con un campo magnetico $\overline{B} \neq 0$ costante e uniforme e un campo E=0 . Che cosa succede?

- Se i vettori v e B sono perpendicolari la particella si muove di moto rettilineo uniforme.
- Se i vettori v e B sono perpendicolari la particella si arresta.
- La particella si muove di moto circolare uniforme se i vettori v e B sono paralleli.
- La particella si muove di moto rettilineo con accelerazione aeq0 se i vettori v e B sono paralleli.
- ✓ Se l'angolo formato dalle direzioni dei due vettori è compreso tra 0° e 90° (estremi esclusi) la particella si muove di moto elicoidale.

Risposta corretta. 0/1p
Total points: 0/1p

3.

La forza che un campo magnetico B esercita su un filo conduttore è:

- Sempre diversa da zero.
- Sempre uguale a zero.
- Sempre diversa da zero, ma soltanto se il filo è attraversato da corrente elettrica.
- ✓ Non si può dire se non conosco la disposizione spaziale del campo rispetto al filo
- Diversa da zero se il filo è percorso da corrente e il campo B è parallelo al filo

Risposta corretta. 0/1p

Se ho una particella carica che si muove con velocità v su cui agisce un campo di induzione magnetica B per un intervallo di tempo Δ t, alla fine dell'intervallo di tempo sarà rimasto/a costante:

- ✓ L'energia cinetica della particella.
- La velocità della particella.
- La posizione della particella
- L'accelerazione della particella.
- lacksquare La grandezza: $q\left(\overline{v} imes\overline{B}
 ight)\cdot\Delta t$

Risposta corretta. 0/1p
Total points: 0/1p

5.

Riscrivere e cambiare - DOMANDA NON VALUTATA

La traiettoria descritta da una particella carica soggetta alla sola azione di un campo magnetico uniforme, diretto ortogonalmente alla velocità della particella, è:

- Circolare, elicoidale oppure rettilinea, non si può determinare a priori.
- **✓** Circolare
- Parabolica
- Rettilinea con accelerazione costante
- Rettilinea con velocità costante

Risposta corretta. 0/1p
Total points: 0/1p

Se calcolo $\oint ar{H} \cdot dar{l}$, il risultato sarà:

- Uguale alla somma dei moduli delle correnti che attraversano una superficie avente per contorno il percorso chiuso.
- Uguale alla somma dei moduli delle correnti che scorrono lungo il percorso su cui si è fatto l'integrale.
- Uguale alla somma delle correnti che scorrono lungo il percorso su cui si è fatto l'integrale.
- Uguale alla somma delle (correnti)² che attraversano una superficie avente per contorno il percorso chiuso.
- ✓ Uguale alla somma algebrica delle correnti che attraversano una superficie avente per contorno il percorso chiuso.

7.	
Una	di queste affermazioni è errata, quale? - DOMANDA NON VALUTATA
	È possibile costruire un magnete permanente utilizzando una sostanza diamagnetica.
	✓ No, mai
	Sì, sempre
	Sì, ma soltanto al di sotto di una certa temperatura
	Solo se il numero di elettroni dell'atomo è dispari
	points: 0/1p
	sola delle seguenti affermazioni che riguardano il campo di induzione magnetica B e il campo elettrico vera, quale?
	Sia E che B non sono conservativi.
	Sia E che B sono conservativi.
	E è conservativo, B non lo è.
	B è conservativo, E non lo è.
	✓ Non si può dire a priori, dipende dai casi.
	points: 0/1p
9.	
_	l è la condizione necessaria affinché il flusso di un campo elettrico e il flusso di un campo magnetico verso una particolare superficie chiusa abbiano valori numericamente eguali tra loro, se calcolati nel
	All'interno della superficie non vi devono essere sostanze ferromagnetiche.
	✓ La somma algebrica delle cariche elettriche all'interno della superficie deve essere nulla.
	All'interno della superficie non vi devono essere né cariche elettriche né calamite.
	All'interno della superficie non vi devono essere cariche elettriche.
	Non può mai essere vero
Rispo	osta corretta. 0/1p

Risposta corretta.

Total points:

0/1p

0/1p

Si genera una forza elettromotrice uguale in ogni istante al flusso del campo magnetico.

	✓ Si genera una forza elettromotrice uguale ed opposta alla rapidità di variazione del fluss	0
	del campo magnetico concatenato con il circuito.	
-	posta corretta. points:	0/1p 0/1p
	oglio dimezzare l'energia E _L immagazzinata in una bobina di induttanza L percorsa da una corrent rica di intensità I. Quale di queste azioni posso compiere?	e
	Raddoppiare la corrente I e dimezzare l'induttanza L.	
	Dimezzare la corrente I.	
	Dimezzare l'induttanza L e raddoppiare la corrente I.	
	✓ Dimezzare l'induttanza L.	
	Dimezzare sia la corrente I che l'induttanza L	
-	posta corretta. points:	0/1p 0/1p
	bbiamo un circuito in cui, variando il generatore, dimezziamo il valore la corrente eletrica che circ circuito:	ola
	Si genera una corrente indotta circola nel verso opposto a quello della corrente del circuito.	
	Si genera una corrente indotta tale che il valore totale della corrente del circuito resta costante.	
	✓ Si genera una corrente indotta circola nello stesso verso della corrente del circuito.	
	Nel circuito non può esservi corrente indotta non essendoci un campo magnetico.	
	La corrente indotta non dipende dalla resistenza del circuito.	
-	points:	0/1p 0/1p
15. Una	delle equazioni di Maxwell è equivalente ad affermare che:	
	Il flusso del campo magnetico attraverso una superficie qualunque è nullo.	
	La circuitazione del campo magnetico è sempre zero.	
	La circuitazione del campo elettrico è sempre zero.	
	Il flusso del campo elettrico attraverso una superficie chiusa è sempre zero.	
	✓ Il flusso del campo magnetico attraverso una superficie chiusa è nullo.	

Total points:

16.

La quarta equazione di Maxwell:

- Si ottiene per simmetria dalla terza, scambiando i ruoli del campo elettrico e del campo magnetico.
- Si applica soltanto a campi elettrici che non variano nel tempo.
- **✓** Contiene un termine chiamato corrente di spostamento.
- Lega il campo magnetico alle sue sorgenti.
- Generalizza il teorema della circuitazione di Ampère.

Risposta corretta.

0/1p

Total points:

0/1p

17.

Una di queste realzioni mette in relazione un campo di induzione magnetica variabile B e il campo elettrico E indotto da esso in un circuito, avente superficie S e contorno I. Quale?:

$$\Phi(ar{E})_S = -rac{d}{dt} \oint_{l(S)} ar{B} \cdot dar{l}$$

$$\oint_{l(S)} ar{B} \cdot dar{l} = -rac{d}{dt} \Phi(ar{E})_S$$

$$\oint_{l(S)} ar{E} \cdot dar{l} = -rac{d}{dt} \Phi(ar{B})_S$$

$$\Phi(ar{B})_S = -rac{d}{dt} \oint_{l(S)} ar{E} \cdot dar{l}$$

$$ar{
abla} imesar{B}=-rac{dar{E}}{dt}$$

Risposta corretta.

0/2p

Total points:

0/2p

18.

Supponiamo di avere un condensatore piano alimentato da un generatore di f.e.m. alternata e riempito da un materiale dielettrico dotato di perdite (quindi con una resistenza diversa da zero) Quale delle seguenti affermazioni è errata?

Dentro il condensatore si crea una corrente di spostamento.

Il campo elettrico e il campo magnetico concatenato saranno paralleli fra loro e perpendicolari alle facce del condensatore

Dentro il condensatore si crea una corrente di conduzione.	
Il campo elettrico nel condensatore e il campo magnetico concatenato varieranno con la stes frequenza della f.e.m. alternata.	sa
Dentro il condensatore si generano una corrente di conduzione e una corrente di spostamen Risposta corretta. Total points:	0/1p 0/1p 0/1p
19. In quali condizioni una particella dotata di carica elettrica diversa da zero può irraggiare energia sotto di onde elettromagnetiche?	orma
Se ha una velocità diversa da zero.	
Se si muove con velocità diversa da zero e accelerazione nulla in un campo elettrico.	
Sempre.	
✓ Se si muove con accelerazione diversa da zero.	
Se si muove di moto qualunque all'interno di un campo magnetico.	
Risposta corretta. Total points:	0/1p 0/1p
20. In un campo elettromagnetico che viaggia nel vuoto, le direzioni del campo elettrico E e del campo magnatico B in due punti molto vicini fra loro:	
Sono tra loro parallele, mentre le direzioni del campo B negli stessi punti sono tra loro perpendicolari.	
Sono tra loro perpendicolari, e così le direzioni di B negli stessi punti.	
Sono paralleli alle direzioni di B.	
✓ Sono perpendicolari alle direzioni di B.	
Sia E che B sono paralleli alla velocità di propagazione del campo.	
Risposta corretta. Total points:	0/1p 0/1p
21. Le equazioni di Maxwell descrivono il comportamento del campo elettromagnetico:	
Soltanto quando esso non cambia troppo rapidamente al passare del tempo.	
Soltanto quando si è lontani da sorgenti del campo Elettrico.	
Nel vuoto, ma non necessariamente nella materia.	
■ ✓ In qualsiasi condizione.	

Separatamente per il campo elettrico E e per il campo magnetico B.
Risposta corretta. 0/1p Total points: 0/1p
22
22. Supponiamo di avere un condensatore piano, posto nel vuoto, con la armature di forma circolare e raggio
R= 14 cm. Al condensatore è applicato un campo elettrico E(t) tale che $\frac{\partial E}{\partial t} = 2 \cdot 10^8 \text{Volt/m} \text{s. Da questi}$
dati possiamo affermare che:
$ ightharpoonup \$ L'intensità della corrente di spostamento è: $ m i \simeq 110~\mu A$
La variazione del flusso del campo elettrico attraverso una sezione del condensatore parallela alle armature è pari a circa $1,2\cdot10^6$ (volt·m)/s.
La variazione del flusso del campo elettrico attraverso la sezione del condensatore parallela alle armature è nulla.
L'intensità della corrente di spostamento è: $i \simeq 1 \cdot 10^8 A$.
Il campo H è 250 T/m
Risposta corretta. 0/3p
Total points: 0/3p
23.
Quali delle seguenti affermazioni sono vere? (Possono esssrci più affermazioni vere)
La luce è un'onda elettromagnetica longitudinale.
In un'onda elettromagnetica il campo elettrico e il campo magnetico sono paralleli tra loro, ma perpendicolari alla direzione di propagazione dell'onda.
✓ Il rapporto tra le intensità del campo elettrico e del campo magnetico di un'onda elettromagnetica è dato dalla velocità della luce.
Il campo elettromagnetico si manifesta soltanto nelle vicinanze delle scariche accelerate che lo generano.
La velocità di propagazione di un'onda elettromagnetica è data dalla radice quadrata del rapporto tra la costante dielettrica e la permeabilità magnetica del vuoto.
Risposta corretta. 0/1p
Total points: 0/1p
24.
Con quali di queste sostanze/materiali non posso realizzare un magnete permanente? (più risposte esatte)
Ferro
Acciaio

	✓ Alluminio	
	√ Rame	
	✓ NaCl osta corretta. points:	0/1ր 0/1 ր
25. Con	ne si scrive S, il flusso di energia e.m. al secondo attraverso una superficie nel vuoto? $\sqrt[4]{E} imes \overline{H}$ $\bar{E} imes \bar{B}$ $(\bar{E} imes \bar{H})$	
	μ_0 $(ar E imes ar H) \cdot \mu_0$ $ar H imes ar E$ osta corretta. points:	0/1 _k 0/1 _k
26. Qua	lle è l'unità di misura nel S.I. del vettore di Poynting? ✓ W/m² J/m² W/m³	
	J·m	
	W·m ² osta corretta. points:	0/1p
27. Qua	le di queste affermazioni è falsa?	
	✓ Se ho un flusso di B che varia nel tempo posso avere delle corrente indotte nei circuiti vic	
	Se ho un flusso di B che varia nel tempo avrò sempre delle correnti indotte nei circuiti vicin	i
	Se ho un flusso di B che varia nel tempo posso accelerare delle cariche q in movimento. Se ho un campo elettrico E che varia nel tempo posso avere un campo B nello stesso punto campo E.	iel
	Se ho un campo elettrico E che varia nel tempo posso avere un campo B costante nello stess	0

punto del campo E.

Risposta corretta. 0/1p
Total points: 0/1p

28.

L'induttanza di una bobina di lunghezza L>> diametro D, composta da N spire:

- E' proporzionale al numero N delle spire
- ✓ E' proporzionale al numero N² delle spire
- E' proporzionale al numero N delle spire/diametro
- $lue{E}$ proporzionale al numero N delle spire x L^2
- E' proporzionale al numero N delle spire ·L/D

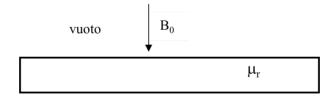
Risposta corretta. 0/1p
Total points: 0/1p

29.

L'energia di un'induttanza L percorsa da una corrente I:

- ✓ Non dipende dipende dalla forma dell'induttanza
- E' il doppio dell'energia fornita dal generatore per caricarla con la corrente I
- E' uguale all'energia fornita dal genaratore per caricarla con la corrente I
- E' la metà dell'energia fornita dal genaratore per caricarla con la corrente I
- E' 1/4 dell'energia fornita dal genaratore per caricarla con la corrente I

Risposta corretta.


Total points:

0/1p

0/1p

30.

E' data una lastra infinita di spessore d di un materiale paramagnetico μ_r posta nel vuoto. Perpendicolarmente a questa superficie è posto un campo B_o . Quali delle seguenti terne di affermazioni sui campi B_o , H_o , H_o fuori dalla lastra (pedice 0) e dentro la lastra (pedice 1) è corretta? Sia $\mu = \mu_r \mu_0$

- $M_0=0$; $B_1=B_0$, $H_1=\mu_r B_0$
- $M_0=1$; $B_1=B_0$, $H_1=B_0/\mu$

#14 0 D D II D /

$$\sim M_0 = 0$$
; $B_1 = B_0$, $H_1 = B_0/\mu$

$$M_0=0$$
; $B_1 = \mu_r B_0$, $H_1 = B_0/\mu$

$$M_0=1$$
; $B_1=B_0$, $H_1=B_0/\mu$

$$M_0=1$$
; $B_1=B_0$, $H_1=B_0/\mu$

Risposta corretta.

Total points: 0/1p

0/1p